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the high wave numbers, § is taken as small parameter. Let u® be the solution
to the problem:
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(6.55)

If v0 is close to w’, then u’ is close to . More precisely, we have:

W =+ dul + 5% + ... (6.56)

A modeling of this kind, while satlsfactory on the theoretical level, is not
8o in practice because the function v° oscillates very quickly in space and
time, and the number of degrees of freedom needed in the discrete system to
describe its variations remains very high. To reduce the size of the discrete

system significantly, other hypotheses are needed, leading to the definition of .

simplified models which are described in the following.

First Model. The first simplification consists in choosing the random pro-
cess in the form:

1 .
v? (Xv t) = ?V (X, t, X’: t,) ! (657)
C

in the space and time scales x’ and ¢/, respectively, of the subgrid modes are
defined as: s

x = == . (6.58)

The new variable v (x,t,x',t') oscillates slowly and can thus be repr
sented with fewer degrees of freedom. Assuming that v is periodical depen
ing on the variables x' and ¢ on a domain Q, = Zx]0,77[, and that t
average of v is null over this domain®, it is demonstrated that the subgri(}
tensor is expressed in the form:

7 =BV , (6.59)

where the term BV is computed by taking the average on the cell of peri-
odicity ©, of the term (v - Vul +ul - Vv), where u! is the a solution on tlus
cell of the problem:
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6 This is equivalent to considering that v (x, tx' 1 ) is statistically homogcneous'
and isotropic, which is theoretically justifiable by the physical hypothesis of ioca.l_ ek

isotropy.

__va‘:u‘+v-‘7x:u‘+u'-fov=Vq;V'Vﬁ—ﬁ'VV ) (660) :
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Ve rul=0 , (6.61)

where vV, designates the gradient with respect to the x’' variables and g the
Lagrange multiplier that enforces the constraint (6.61). This model, though
simpler, is still difficult to use because the variable (x — Gt) is difficult to
manipulate. So other simplifications are needed.

Second Model. To arrive at a usable model, the authors propose neglect-
ing the transport of the random variable by the filtered field in the field’s
évolution equation. This way, the random variable can be chosen in the form:

vi(x, r)—l (ot x0) (6.62)
with
=3 ~ (6.63)

and where the time t' is defined as before. Assuming that v is periodic along
. x and ¢’ on the domain (2, and has an average of zero over this interval, the
. subgrid term takes the form:

7=AVa ' (6.64)

where A is a definite positive tensor such that the term AV is equal to the

“average of the term (v ® u') over £, in which u! is a solution on £, of the

problem:

% - VV2”11 +v Vyul =Vg+v-Va., (6.65)

Ve ul=0 . (6.66)
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6.2.1 Deardorff Model

Another approach for obtaining a model for the subgrid tensor consists in
"solving an evolution equation for each of its components. This approach,
. proposed by Deardorff [77] and recently re-investigated by Fureby et al. {107],
. is analogous in form to two-point statistical modeling. Here, we adopt the case

where the filter is a Reynolds operator. The subgrid tensor 7;; is thus reduced

: to the subgrid Reynolds tensor R;;. We deduce the evolution equation of the

:pb_grld tensor components from that of the subgrid modes (3.29)7:

7 This i 1s done by applying the filter to the relation obtained by multiplying (3.29)
by u and taking the ha]f sum with the relation obtained by mvertmg the sub-
i scnpts i and J.
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The various terms in this equation have to be modeled. The models :

Deardorff proposes are:
— For the pressure—strain correlation term:
ou' ou; o ¥ Gsps 2 . 2 — .
pr(g)?ﬂj 4 _.a.,c_i = —Cm——Z—— Tij — §q§g55ij + gqusSij , (6.68
' i

where Cy, is a constant, qq . the subgrid kinetic energy, and S;; the strai
rate tensor of the reqolved ﬁeld A
— For the dissipation term:

k
where C, is a constant.
— For the triple correlations:
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The pressure-velocity correlation terms p'u) are neglected. The values of

the constants are determined in the case of isotropic homogeneous turbulence

Crn =413, C. = 0.70, C3,, = 0.2 . - (6.71)

Lastly, the subgrid kinetic energy is determined using evolution equatio
(4.108).

6.2.2 Link with the Subgrid Viscesity Models

- T S
We reach the functional subgrid viscosity models again starting with a model

with transport equations for the subgrid stresses, at the cost of adchtmn‘
assumptions. For example, Yoshizawa et al. [363] proposed neglecting all th
terms of equation (6.67), except. those of production. The evolution equat.lon
thus reduced comes to: :
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Assuming that the subgrid modes are isotropic or quasi-isotropic, i.e. that

(6.72)

‘the extra-diagonal elements of the subgrid tensor are very small compared

with the diagonal elements, and that the latter are almost mutually equal, the
ight-hand side of the reduced equation (6. 72) comes down to the simplified
form:

*QSEgs—gij 3 (673)

in which g2, = ujul/ 2 is the subgrid kinetic energy. Let t be the character-
stic time of the subgrid modes. Considering the relations (6.72) and (6.73),

‘and assuming that the relaxation time of the subgrid modes is much shorter
than that of the resolved scales®, we get

1 _
Tij = 3Tk~ —toggSij - (6.74)

The time {p can be evaluated by dimensional argument using the cutoff

length A and the subgrid kinetic energy:

A
to ~
A/ B

By ‘entering this estimate into equation (6.74), we get an expression anal-

(6.75)

ogous to the one used in the functional modeling framework:

1 . L
g’i’kkaij ~—A ngs Sij i (6.75)

Tij —

.;6.3 Deterministic Models of the Subgrid Structures

6.3.1 General

Misra and Pulin [236], following on the works of Pullin and Saffman [273],

:propoeed subgrid models using the assumption that the subgrid modes can
“be represented by stretched vortices whose orlentd,tlon is governed by the

resolved scales.
Supposing that the subgrid modes ¢an be linked to a random superimpo-

sition. of fields generated by axisymmetrical vortices, the subgrid tensor can
be written in the form:

N .
=2 /k E(k)dk{ B Zpg Beg) (6.77)

'2_3 ‘We.again find here the * “al scale-separation hypothesis 4.4.



